A Selection of useful papers in preparation for the EPRV workshop

Sunday - Doppler Primer Session

  1. 1. High Precision Challenges with Andreas Quirrenbach

  2. Lovis C. & D. Fischer 2010, “Radial_Velocity.pdfExoplanets Ed. S. Seager, University of Arizona Press, Tucson AZ.

  3. 2.Statistical analysis with Dan Foreman-Mackey

  4. Foreman-Mackey, Hogg & Morton 2014, “Exoplanet Population Inference and the Abundance of Earth Analogs from Noisy, Incomplete Catalogs” ApJ 795, 64

  5. Hou, Goodman & Hogg 2014, “The Probabilities of Orbital-Companion Models for Stellar Radial Velocity Data” arXiv: 1401.6128

  6. Hogg, Myers & Bovy 2010, “Inferring the Eccentricity Distribution” ApJ 725, 2166

  7. 3. Spot Modeling with Xavier Dumusque

  8. Dumusque et al. 2014 “SOAP 2.0. A Tool to Estimate the Photometric and Radial velocity Variations Induced by Stellar Spots” ApJ 796, 132

  9. 4. Doppler codes with John Johnson

  10. Butler et al. 1996, “Attaining a Doppler Precision of 3 m/s” PASP, 108, 500

  11. Baranne et al. 1996, “ELODIE: A spectrograph for acurate radial velocity measurements” A&AS 119, 373 (with particular attn to Section 3.7 on the cross-correlation technique)

  12. 5. Instrument challenges with Francesco Pepe

  13. Pepe, Enrenreich & Meyer 2014, “Instrumentation for the detection and characterization of exoplanets” Natur 513, 358

Monday - Current State of the Art Doppler Precision

  1. 1.APF and HIRES: Andrew Howard

  2. Fulton et al. 2015 “Three Super-Earths Orbiting HD 7924” ApJ (accepted) arXiv:1504.06629

  3. 2.APF: Greg Laughlin

  4. Vogt et al. 2014, “APF-The Lick Observatory Automated Planet Finder” PASP 126, 359

  5. 3.CHIRON and the Hamilton spectrometer: Debra Fischer

  6. Fischer, Marcy & Spronck 2014, “The Twenty Five Year Lick Planet Search” ApJS, 210, 5

  7. Tokovinin et al. 2013, “CHIRON - A Fiber Fed Spectrometer for Precise Radial Velocities” PASP, 125, 1336

  8. 4. HARPS: Christophe Lovis

  9. Mayor et al. 2009, “The HARPS search for southern extra-solar planets. XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 M)” A&A 493, 639

  10. Pepe et al. 2000, “HARPS: a new high-resolution spectrograph for the search of extrasolar planets” SPIE 4008

  11. 5. HARPS high cadence: Zaira Berdiñas

  12. Anglada-Escudé et al. 2014, “Two planets around Kapteyn's star: a cold and a temperate super-Earth orbiting the nearest halo red dwarf” MNRAS 443, 89

  13. Pepe et al. 2011, “The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310” A&A 534, 58

  14. 6. HARPS-N: Dave Phillips

  15. Bonomo et al. 2014, “Characterization of the planetary system Kepler-101 with HARPS-N. A hot super-Neptune with an Earth-sized low-mass companion” A&A 572, A2

  16. Cosentino et al. 2012, “Harps-N: the new planet hunter at TNG” SPIE 8446

  17. 7. HARPS-N: Lars Buchhave

  18. Dumusque et al. 2014, “The Kepler-10 Planetary System Revisited by HARPS-N: A Hot Rocky World and a Solid Neptune-Mass Planet” ApJ 789, 154

  19. Pepe et al. 2013, “An Earth-sized planet with an Earth-like density” Natur 503, 337

  20. 8. Hercules, HRS and the Tull: Michael Endl

  21. Endl et al. 2014, “The Mt John University Observatory search for Earth-mass planets in the habitable zone of α Centauri” IJAsB (in press), arXiv: 1403.4809

  22. Endl et al. 2012, “Revisiting ρ1 Cancri e: A New Mass Determination of the Transiting Super-Earth” ApJ 759, 19

  23. Hearnshaw et al. 2002, “The Hercules Échelle Spectrograph at Mt. John” ExA 13, 59

  24. Tull, R. G. 1998, “High-resolution fiber-coupled spectrograph of the Hobby-Eberly Telescope” SPIE 3355

  25. 9. PARAS: Abhijit Chakraborty

  26. Chakraborty et al. 2014, “The PRL Stabilized High-Resolution Echelle Fiber-fed Spectrograph: Instrument Description and First Radial Velocity Results” PASP 126, 133

  27. Chakraborty et al. 2010, “First light results from PARAS: the PRL Echelle Spectrograph” SPIE 7735

  28. 10. PFS: Pamela Arriagada

  29. Arriagada et al. 2013, “Two Planetary Companions around the K7 Dwarf GJ 221: A Hot Super-Earth and a Candidate in the Sub-Saturn Desert Range” ApJ 771, 42

  30. Crane et al. 2010, “The Carnegie Planet Finder Spectrograph: integration and commissioning” SPIE 7735

  31. 11. SONG: Frank Grundahl

  32. Andersen et al. 2014, “Hardware and software for a robotic network of telescopes - SONG” III Workshop on Robotic Autonomous Observatories (Eds. J. C. Tello et al.) Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) 45, 83

  33. 12. Sophie: Francois Bouchy

  34. Bouchy, Diaz, Hébrard, et al. 2013, “SOPHIE+: First results of an octagonal-section fiber for high-precision radial velocity measurements” A&A, 549, 49 

  35. Courcol, Bouchy, Pepe, et al. 2015, “The SOPHIE search for northern extrasolar planets VIII. A warm Neptune orbiting HD164595”A&A, in press

  36. 13. Break out session - Barycentric Corrections: Jason Eastman

  37. Wright, J. T. & J. D. Eastman 2014, “Barycentric Corrections at 1 cm s-1 for Precise Doppler Velocities” PASP 126, 838

  38. 14. Break out session - Telluric Contamination: Sharon Wang and Jason Wright

  39. Cunha et al. 2014, “Impact of micro-telluric lines on precise radial velocities and its correction” A&A 568, 35

  40. 15. Break out session - Frequency Comb Calibration: Dave Phillips

  41. Li, Phillips, et al. 2010, “Astro-comb calibration of an Echelle Spectrograph” SPIE 7735

  42. 16. Break out session - Fiber Scrambling: Gabor Furesz

  43. Szentgyorgyi et al. 2012, “The GMT-CfA, Carnegie, Catolica, Chicago Large Earth Finder (G-CLEF): a general purpose optical echelle spectrograph for the GMT with precision radial velocity capability” SPIE 8446

  44. 17. “Critical Path Challenges for 10 cm/s precision” Andy Szentgyorgi

  45. Podgorski et al. 2014 “A novel systems engineering approach to the design of a precision radial velocity spectrograph: the GMT-Consortium Large Earth Finder (G-CLEF)” SPIE 9147

Monday - Technical Hurdles for measuring delta lambda

  1. 1.“Major Hardware Issues on the path to 10 cm/s” Suvrath Mahadevan

  2. Mahadevan et al. 2014, “The Habitable-zone Planet Finder: A status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope” SPIE 9147

  3. 2.“e2v high performance imagers for astronomy” Paul Jorden

  4. Wang et al. 2014, “Characteristic of e2v CMOS sensors for astronomical applications” SPIE 9154

  5. 3.“Wavelength calibration” Scott Diddams

  6. Ycas et al. 2012, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb” Optics Express 20, 6, p.6631

  7. 4.“Fabry-Perot frequency combs” Ansgar Reiners

  8. F.F. Bauer, M. Zechmeister & A. Reiners, 2015, "Calibrating echelle spectrographs with Fabry-Perot etalons", A&A accepted

  9. Reiners, Banyal & Ulbrich 2014, “A laser-lock concept to reach cm s-1-precision in Doppler experiments with Fabry-Pérot wavelength calibrators” A&A 569, 77

  10. 5. “Fiber scrambling” Gabor Furesz

  11. Szentgyorgyi et al. 2012, “The GMT-CfA, Carnegie, Catolica, Chicago Large Earth Finder (G-CLEF): a general purpose optical echelle spectrograph for the GMT with precision radial velocity capability” SPIE 8446

Tuesday - Statistical Techniques

  1. 1.“Flexible models for structured noise, stochastic variability and instrument systematics” David Hogg

  2. Foreman-Mackay et al. 2015, “Increasing the sensitivity of Kepler to Earth-like exoplanets” AAS Meeting #225, #105.01 

  3. 2.“Next-generation Bayesian Methods for Next-Generation Doppler Surveys” Eric Ford

  4. Ford, Moorhead & Dimitri 2011, “A Bayesian Surrogate Model for Rapid Time Series Analysis and Application to Exoplanet Observations” Bayesian Anal. 6, 475

  5. Clyde et al. 2007, “Current Challenges in Bayesian Model Choice” Statistical Challenges in Modern Astronomy IV ASP Conference Series (Eds. G. J. Babu & E. D. Feigelson), Vol. 371, 224

  6. 3.Building and validating Bayesian discovery chains for exoplanet data analysis” Tom Lorado

  7. Loredo, Berger, Chernoff, Clyde, Liu 2010, “Bayesian methods for analysis and adaptive scheduling of exoplanet observations” Statistical Methodology, 9, 101

Papers on Gaussian Processes (requested in the pre-meeting survey) provided by Tom Loredo:

  1. Yuyang Wang et al. 2012 “Nonparametric Bayesian estimation of periodic light curves” ApJ 756 67 doi:10.1088/0004-637X/756/1/67

  2. The Gaussian Processes Web Site

  3. Rasmussen & Williams “Gaussian Processes for Machine Learning

  4. Barber “Bayesian Reasoning and Machine Learning” Ch 19, p367

  5. MacKay “Information Theory, Inference, and Learning Algorithms” Ch 45, p 546

  6. MacKay “Gaussian processes

  7. Bishop “Pattern Recognition and Machine Learning

  8. Snelson 2007 “Flexible and efficient Gaussian process models for machine learning” (thesis)

  9. Rasmussen 2007 “Bayesian inference and Gaussian processes” (video lecture)

  10. MacKay “The Humble Gaussian Distribution

  11. 4. Breakout session - Standardizing criteria for detection thresholds: Michael Endl, Damien Ségransan, Suvrath Mahadevan

  12. Smith, P. H. 1982, “Criteria for Positive Planetary Detection Using the Radial Velocity Method” BAAS 14, 626

  13. 5. Breakout session - Techniques for identifying photospheric signals

  14. 6. Breakout session - Statistical Techniques: Eric Ford and Tom Loredo

  15. Ford, Moorhead & Dimitri 2011, “A Bayesian Surrogate Model for Rapid Time Series Analysis and Application to Exoplanet Observations” Bayesian Anal. 6, 475

  16. 7. “Modeling Doppler noise: disentangling planetary signals from stellar activity” Roman Baluev

  17. Baluev 2013, “The impact of red noise in radial velocity planet searches; only three planets orbiting GJ 581?” MNRAS, 429, 2052  

  18. Baluev 2015, “Enhanced models for stellar Doppler noise reveal hints of a 13-year activity cyce of 55 Cancri” MNRAS, 446, 1493

  19. 8. "Sensitivity of correlated noise models when applied to synthetic and real observations" Guillem Anglada

  20. Anglada-Escudé et al. 2014, “Two planets around Kapteyn's star: a cold and a temperate super-Earth orbiting the nearest halo red dwarf” MNRAS 443, 89

Tuesday - Extracting weak signals in the presence of structured noise

  1. 1. “Weak Doppler signals in current radial velocity surveys: ghosts or planets” Damien Ségransan

  2. 2. “The Keplerian Fitting Challenge” Xavier Dumusque

  3. Dumusque “The RV Challenge

  4. 3.Separating stellar activity induced line profile variations from Doppler shifts” Thorsten Carroll

  5. 4.The interplay of aliasing and stellar activityRebekah Dawson

  6. Dawson, R. & D. Fabrycky 2010, “Radial Velocity Planets De-aliased: A New, Short Period for Super-Earth 55 Cnc e” ApJ 722, 937

  7. Haywood, R. D., Collier Cameron, A., Queloz, D., et al.  2014, MNRAS, 443, 2517 http://adsabs.harvard.edu/abs/2014MNRAS.443.2517H

  8. 5. “The interesting case of HD41248: planets or spots?” Nuno Santos

  9. Santos et al. 2014 “The HARPS search for southern extrasolar planets. XXXV. The interesting case of HD 41248: stellar activity, no planets? ” A&A 556, 35

  10. 6. “Lessons learned from frequentist methods” Artie Hatzeslivepage.apple.com

  11. Hatzes, A. 2013 “The Radial Velocity Detection of Earth-mass Planets in the Presence of Activity Noise: The Case of α Centauri Bb” ApJ 770, 133

Wednesday - Identification and correction of photospheric signals

  1. 1. “Photospheric signals in RV data” Christophe Lovis

  2. Lovis et al. 2011, “The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities” arXiv: 1107.5325

  3. 2. “Wavelength dependence of photospheric signals” Lisa Prato

  4. Prato et al. 2008, "A Young-Planet Search in Visible and Infrared Light: DN Tauri, V836 Tauri, and V827 Tauri” ApJ, 687, 103

  5. Mahmud et al. 2011, "Starspot-induced Optical and Infrared Radial Velocity Variability in T Tauri Star Hubble I 4” ApJ, 736, 123

  6. 3. “Empirical correction of the color effect on radial velocities” Guillaume Hébrard

  7. Bourrier, V. & G. Hébrard 2014, “Detecting the spin-orbit misalignment of the super-Earth 55 Cancri e” A&A 569, 11

  8. 4. “NIR planet searches to mitigate stellar noise” Pedro Figueira

  9. Figueira et al. 2010, “Radial Velocities with CRIRES. Pushing precision down to 5 - 10 m/s” A&A 511, 55

  10. Figueira, Pepe, Lovis & Mayor 2010, “Evaluating the stability of atmospheric lines with HARPS” A&A, 515, 106

  11. 5. “Optical vs NIR spectroscopy” Jacob Bean

  12. Reiners et al. 2010, “Detecting Planets Around Very Low Mass Stars with the Radial Velocity Method” ApJ 710, 432

  13. 6. “M dwarfs and stellar activity impact on RVs” Paul Robertson

  14. Robertson et al. 2014, “Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581” Sci 345, 440

  15. 7. “Stellar surface simulator for simultaneous fitting of flux and RV variations” Enrique Herrero

  16. Herrero et al. 2014, “Modelling the photosphere of active stars” Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society (SEA) (Eds. J. C. Guirado et al.) 699